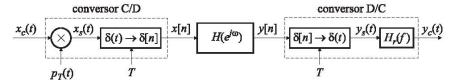
Nombre:L.U.:	
--------------	--

Procesamiento Digital de Señales - Segundo Parcial - 24 de noviembre de 2011

- 1. En el sistema discreto de procesamiento de señales de tiempo continuo de la Figura $H(e^{j\omega})$ es un filtro pasabajos ideal discreto con frecuencia de corte $\omega_c = 0.6\pi$. Si $x_c(t) = \sin(2\pi 1000\ t) + 3\cos(2\pi 3500\ t)$, y la frecuencia de muestreo del sistema es $f_s = 1/T = 4000\ \text{Hz}$
 - (a) Grafique detalladamente el espectro $X_c(f)$ de $x_c(t)$.
 - (b) Calcule y grafique el espectro $X_s(f)$ de la señal muestreada continua $x_s(t)$.
 - (c) Calcule y grafique el espectro $X(e^{j\omega})$ de la señal discreta x[n].
 - (d) Calcule y grafique el espectro $Y(e^{j\omega})$ de la señal discreta y[n] a la salida del filtro $H(e^{j\omega})$.
 - (e) Calcule y grafique el espectro $Y_s(t)$ de la señal muestreada continua $y_s(t)$.
 - (f) Calcule y grafique el espectro de la señal continua de salida $y_c(t)$. Escriba la expresión analítica de la señal $y_c(t)$.
 - (g) Si el filtro reconstructor $H_r(f)$ se reemplaza un mantenedor de orden cero (MOC),
 - i. Especifique la respuesta impulsiva del mantenedor.
 - ii. Calcule la respuesta en frecuencia del mantenedor.
 - iii. Indique los efectos sobre la señal de salida $y_c(t)$.



2. La sucesión

$$x[n] = 5 \ 2^n u[-n-1] - \square 3u[n]$$

se aplica al sistema caracterizado por la ecuación a diferencias

$$y[n] = x[n-2] - \square(3/2) y[n-1], \quad y[-1] = c.$$

- (a) Calcule X(z), la transformada z de x[n], determine su región de convergencia, y dibuje el diagrama de polos y ceros.
- (b) Calcule H(z), la transformada z del sistema caracterizado por la ecuación a diferencias. Determine las regiones de convergencia posibles, y el valor del a condición inicial y[-1] compatible con cada una de ellas.
- (c) Discuta la estabilidad y causalidad del sistema en cada una de las regiones de convergencia.
- (c) Calcule la salida del sistema **causal** cuando se lo excita con la entrada x[n], y exprésela de la manera más compacta posible.
- (d) ¿Cuál es la salida de estado estacionario?
- 3. Se debe diseñar un filtro de fase lineal generalizada (FLG) que bloquee completamente las componentes frecuenciales de frecuencia ω_0 y π .
 - (a) El filtro será FIR o IIR? ¿porqué?
 - (b); Cuál es el mínimo orden del sistema que permite satisfacer los requisitos de diseño?
 - (c) Grafique los polos y ceros del sistema.
 - (d) Calcule la función de sistema H(z) del filtro de modo que la ganancia en $\omega = 0$ sea unitaria.
 - (e) Determine la respuesta impulsiva h[n].
 - (f) Encuentre la respuesta en frecuencia $H(e^{j\omega})$ y exprésela como $H(e^{j\omega}) = A(\omega)e^{-j(\omega\alpha+\beta)}$, identificando $A(\omega)$, α y β .
 - (g); Cuál es el retardo de grupo del filtro?
 - (h) Escriba la ecuación a diferencias que caracteriza al sistema.
- 4. La sucesión x[n] está formada por N muestras de la señal $A_0 \operatorname{sen}(\omega_0 n + \phi_0) + A_1 \operatorname{sen}(\omega_1 n + \phi_1)$, con $0 < \omega_0 < \omega_1 < \pi$. Esta sucesión se "pesa" con la ventana temporal w[n], y la señal "ventaneada" se completa con ceros para formar la sucesión y[n] de M > N puntos de longitud. Si la transformada discreta de Fourier Y[k] de y[n] tiene dos picos en los índices k_0 , k_1 , donde $0 < k_0 < k_1 < M/2 1$, es decir

$$Y[k_0] = Y_0 e^{i\theta_0}$$
 $Y[k_1] = Y_1 e^{i\theta_1}$,

encuentre aproximadamente A_0 , ω_0 , ϕ_0 , A_1 , ω_1 , ϕ_1 en función de Y_0 , θ_0 , Y_1 , θ_1 , M, N y w[n]. Esta solución ¿es única?

Serie de Fourier (SF)	Transformada de Fourier (TF)	Transf. de Fourier de señales discretas (TFTD)	Transf. Discreta de Fourier (TDF)
$\tilde{x}(t) = \sum_{k} c_k e^{j\frac{2\pi}{T}kt}$	$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$
$c_{k} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}kt} dt$	$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n}$	$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$
Varios	$\sum_{k=0}^{N-1} \rho^k = \frac{1-\rho^N}{1-\rho}, \ \sum_{k=0}^{\infty} \rho^k = \frac{1}{1-\rho}$	$\operatorname{sinc}(x) = \frac{\operatorname{sen}(\pi x)}{\pi x}$	

dominio frecuencial (Ω)

dominio temporal

dominio frecuencial (f)

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k} X_c \left[\frac{1}{T_s} (\omega - 2\pi k) \right] \quad \Leftrightarrow \quad x[n] = x_c (nT_s) \qquad \Leftrightarrow \quad X(e^{j\omega}) = \frac{1}{T_s} \sum_{k} X_c \left[\frac{f_s}{2\pi} (\omega - 2\pi k) \right]$$

$$Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}) \quad \Leftrightarrow \quad y[n] = x[n] * h[n] \quad \Leftrightarrow \quad Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega})$$

$$Y_s(\Omega) = Y(e^{j\omega})|_{\substack{\omega = \Omega \frac{2\pi}{T_s} \\ = \Omega Ts}} \quad \Leftrightarrow \quad y_s(t) = \sum_{n} y[n] \delta(t - nT_s) \quad \Leftrightarrow \quad Y_s(f) = Y(e^{j\omega})|_{\substack{\omega = f \frac{2\pi}{T_s} \\ = 2\pi f Ts}}$$

$$Y_r(f) = H_r(\Omega) Y_s(\Omega) \quad \Leftrightarrow \quad y_r(t) = \sum_{n} y[n] h_r(t - nT_s) \quad \Leftrightarrow \quad Y_r(f) = H_r(f) Y_s(f) \\ = T_s H(e^{j\omega}) X(e^{j\omega})|_{\substack{\omega = f \frac{2\pi}{T_s} \\ = 2\pi f Ts}}$$

$$Si |\Omega| < \frac{\Omega_s}{2} = \frac{\pi}{T_s}, \\ 0, \quad \text{caso contrario.}$$

$$H_c(f) = \begin{cases} H(e^{j\omega})|_{\substack{\omega = f \frac{2\pi}{T_s} \\ = 2\pi f Ts}}, \\ \text{o, caso contrario.} \end{cases}$$

$$z^N = re^{j\theta}$$
 \Rightarrow $z_k = \sqrt[N]{r}e^{j\frac{\theta+2\pi k}{N}}, k = 0, 1, ..., N-1$

Transformada Bilineal: $s = \frac{2}{T} \frac{(1-z^{-1})}{(1+z^{-1})}, \quad z = \frac{(2/T+s)}{(2/T-s)}, \quad \omega = 2\arctan(\pi f T_d), \quad f = \frac{1}{\pi T_d}\tan\left(\frac{\omega}{2}\right)$

Invariación al impulso: $h[n] = T_d h_c(t)|_{t=nT_d}$