APELLIDO Y NOMBRE:	NOTA:
EMAIL:	REG. No:

- (a) Hallar $z, \bar{z}, |z|, Argz, Re(z)$ e Im(z), sabiendo que $z \bar{z} = \sqrt{12}i^{-25}, z.\bar{z} = 4$ y el afijo de z está 1. en el IV cuadrante.
 - (b) Dar la representación de z en forma cartesiana, binómica, trigonométrica y exponencial. Representar en el plano.
- (a) Calcular $\sqrt[3]{\cos \pi/10 + i \sin \pi/10}$, dando el resultado en forma binómica. Graficar en el plano 2. complejo.
 - (b) Dar las condiciones que caractericen la zona sombreada.

(a) Hallar k y determinar qué polinomio es factor de **p**: $5x^4 + kx^2 - 2x - 80$ sabiendo que el resto 3. de dividir \mathbf{p} por x + 2 es 8.

i.
$$5x^3 - 10x^2 - 21x - 40$$

ii.
$$5x^3 - 10x^2 + 21x - 44$$

i.
$$5x^3 - 10x^2 - 21x - 40$$
 ii. $5x^3 - 10x^2 + 21x - 44$ iii. $5x^3 + 10x^2 - 21x + 44$

- (b) Hallar $(5x^3 + 10x^2 15x 30, 3x^2 + 3x 6)$ y $[5x^3 + 10x^2 15x 30, 3x^2 + 3x 6]$. (Ayudita: recordar que son mónicos)
- (a) Hallar todas las raíces de $x^5 + 6x^4 + 15x^3 + 26x^2 + 36x + 24$, indicando su orden de multiplicidad 4. y descomponerlo en factores simples en $\mathbb{Q}[x]$.
 - (b) Dar f(x) un polinomio en $\mathbb{Q}[x]$ de grado mínimo que tiene a $\sqrt{2}$ como raíz múltiple y es divisible por $x^2 + 1$ y f(-1) = 0, f(0) = -1. Hallar todas sus raíces. ¿Es único?
- (a) Demostrar que si $z = |z| e^{i\theta}$, entonces $z^n = |z|^n e^{in\theta}$, para todo $n \in \mathbb{N}$. (R) (Ayudita: recordar que $n \in \mathbb{N}$)
 - (b) Hallar todas las raíces de $x^6 + x^4 i x^4$

Nro. de hojas entregadas:

Número de ejercicio	®	1	2	3	4
Cantidad de hojas	En				

Firmar la última hoja.