Y-}

®

@ Introduccién a la Programacién Orientada a Objetos
DCIC - UNS

PRIMER PARCIAL-07/10/2025

APELLIDO Y N iy
CANTIDAD DE HOJAS ENTREGADAS (SIN ENUNCIADO): ,]
Importante: La Interpretacién del enunciado es parte del examen.
LA EVALUACION SE REALIZARA CONSIDERANDO LA CORRECTITUD, LEGIBILIDAD Y EFICIENCIA DE LAS SOLUCIONES PROPUESTAS.
.NO RESUELVA LOS EJERCICIOS EN EL ENUNCIADO, REALICE LOS PROBLEMAS EN HOJAS SEPARADAS.

PROBLEMA 1
EstaclonMeteorclogica Sensor

<<Atributos de Instancia>> <<Atrlbutos de Instonclo>>
codlgo: entero temperatura: entero
activa: booleano humedad: entero
sensor: Sensor viento: entero
<<Constructor>> <<Constructor>>
EstacionMeteorologlca {cod:entero, s:Sensar) Sensor({temp, hum, vlento:entero)
<<Comondos>> <<Comandos>

establecerTemperatura(temp:entero)
establecerSensor(s:Sensor) establecerHumedad({hum:entero)
copy(e: EstaclonMeteorologica) establecerViento{v:entero)

activar() copy{s:Sensor)

desactlivar() <<Consultas>>
obtenerTemperatura():entero
obtenerHumedad():entero
obtenerViento():entero
equals(s:Sensor):baoleano

establecerCodigo{cod:entero)

<<Consultas>>
obtenerCodigo(): entero
obtenerSensor():Sensor
estaActiva():booleano
clone():EstaclonMeteorologica clone():Sensor
equals(e: EstaclonMeteorologica):booleano

estacionMasCallda(e: EstaclonMeteorologlca): EstaclonMeteorologlca

Implemente en Java la clase EstaclonMeteorologica completa, asumiendo que cuenta con la clase Sensor

totalmente implementada.

e El constructor crea una estacién meteoroldgica, asociado al sensor s. Requiere s ligado y cod>0. Una
estacion estd siempre activa cuando se crea.

« establecerCodigo(cod:entero), Requiere cod>0.

e establecerSensor(s: Sensor). Requiere s ligado.

* copy(e: EstacionMeteorologica). Si el pardmetro e estd ligado modifica el estado interno de la estacién que
recibe el mensaje; sino no provoca ningin cambio. Los métodos equals y copy se Implementan en
profundidad y clone de forma superficial,

* estaclonMasCalida(e: EstacionMeteorologica): EstacionMeteorologica. Retorna |a estacién cuyo sensor
registrd la temperatura més alta. En caso de que ambos hayan registrado la misma temperatura, retorna la
estacién cuyo sensor registré el mayor nivel de humedad. Si también hay coincidencia, devuelve la estacién

que recibe el mensaje. Requiere e ligado.

PROBLEMA 2

a. A partir del diagrama de clases del PROBLEMA 1, y considerando que los métodos equals y copy se
implementaron en profundidad, y el método clone de forma superficial, dibuje el diagrama de objetos al
completarse la ejecucién, indicando el N° de instruccién en cada paso:

https://v3.camscanner.com/user/download

Sensor s1, 52, $3, s4;
EstacionMeteorologica el, e2, €3, e4, e5;
s1=new Sensor(25, 75, 30);

s2 = new Sensor(27, 65, 30);

e1 = new EstacionMeteorologica(123, s1);
e2 = new EstacionMeteorologica(126, $2);

10.
11,

12,
13,
14,

BN e w N

sd =%3;

b. Muestre los valores que computan las siguientes expresiones:

s3=sl.clone();

15.

1. el.equals(e3d)

2. el.obtenerSensor().equals(e2.obtenerSensor())

3. e2.equals(eS)

4, el==e3

S. e2.obtenerSensor()==e5.obtenerSensor()

6. el.obtenerSensor{)==e3.obtenerSensor()
PROBLEMA 3

e2.desactivar();

s4.establecerHumedad(80);

3 = new EstaclonMeteorologica(123, s4);
ed=el;

e5 =e2 clone();

el.copy(e3);
e2.obtenerSensor().establecerHumedad(50);

1. Implemente la clase Pulserafitness completa. La clase PulseraFitness encapsula un arreglo de enteros, donde cada
posicién corresponde al total de pasos registrados por una persona en un dia. De esta manera, el arreglo permite
almacenar y consultar la evolucién de la actividad fisica a lo largo de un periodo de tiempo. A partir de estos registros,

PulseraFitness

<<Atributos de clase>>
minPasos = 10000
<<Atributos de instancig>>
registro: entero []

<<Constructor>>

PulseraFitness(n: entero)
<<Comandos>
establecerCantPasos(d, pasos: entero)
<<Consultas>>

obtenerCantDias(): entero
obtenerCantPasos(d: entero): entero

alMenosNDiasCumplidos(n: entero):booleano

diaMasActivo():entero

la clase ofrece funcionalidades para analizar el rendimiento del usuario.

e PulseraFitness(n: entero). Requiere n>0. La clase cliente ve las posiciones a partir de 0.

e establecerCantPasos(d, pasos: entero). Establece la cantidad de pasos registrados en el dia d. Si d no es un dia

vélido, o pasos es negativo, no produce ningln efecto,

o obtenerCantPasos(d: entero): entero. Retorna la cantidad de pasos registrados en el dia d. Si d no es un dia vdlido,

retorna -1,

¢ alMenosNDiasCumplidos(n: entero):booleano. Retorna verdadero si, y solo si, existen al menos n dias con una

cantidad de pasos mayor o igual a minPasos. Requiere n > 0.

» diaMasActivo():entero. Retorna el indice del dfa con la mayor cantidad de pasos registrados. En caso de existir mds

de un dfa con el mismo valor méximo, retorna el primero de ellos.

2. Implemente la clase TesterPulsera con el objetivo de probar el correcto funcionamiento de la clase PulseraFitness:
a. Cree una instancia de PulseraFitness para registrar los pasos correspondientes a 7 dias (una semana) e inicialice el

arreglo con valores de pasos diarios a eleccién.
b. Verifique el método alMenosNDiasCumplidos(n: entero): booleano con al menos 3 casos significativos.

https://v3.camscanner.com/user/download

