
TERMODINÁMICA QUÍMICA PARA INGENIERÍA PRIMER EXAMEN PARCIAL 2 DE JUNIO DE 2020

EJERCICIO 3

El metilmercaptano (CH_4S) es uno de los compuestos que puede adicionarse al gas natural para odorizarlo. La combustión completa de 1 mol de CH_4S (l) a presión atmosférica y 25 °C libera 1127.33 kJ produciendo CO_2 (g), H_2O (g) y SO_2 (g). A fin de comprobar su poder calorífico, se inyecta un caudal constante de 3.0 mol/s de metilmercaptano puro en una caldera junto con aire a 25 °C y 1 atm. Para asegurarse una combustión completa se alimenta aire tal que se obtenga un 20 % de exceso de O_2 . La temperatura de los productos de combustión al abandonar la caldera es de 332.23 °C. El calor de combustión en la caldera se utiliza para la calefacción de una corriente con un caudal de 15 kg/s de agua a 25 °C y 1 atm. Determine:

- a) Calor estándar de formación de CH₄S (l).
- b) Calor liberado por la combustión.
- c) Temperatura que alcanza el agua producida por la caldera a 1 atm.

Datos:

 $C_{P,CH4S(I)} = 89.04 \text{ J/(mol·K)}$

 $C_{P,agua(l)} = 4.18 \text{ kJ/(kg·K)}$

Nota: Desprecie los efectos de la caída de presión a través de la caldera.