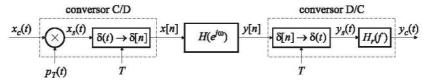
NT 1		T T
Nombre:		•
1NOITH/IC	1.	

Procesamiento Digital de Señales - Segundo Parcial - 15 de noviembre de 2017

- 1. En el sistema de la figura la entrada es $x_c(t) = 1 + \cos(2\pi f_0 t) + \cos(2\pi 2.5 f_0 t)$, con $f_0 = 2.5$ kHz, la respuesta impulsiva del sistema discreto es $h[n] = \delta[n] + \delta[n-1]$ y la frecuencia de muestreo es $F_s = 1/T = 10$ kHz.
 - (a) Grafique detalladamente el espectro $X_c(f)$ de $x_c(t)$.
 - (b) Calcule y grafíque el espectro $X_s(f)$ de la señal muestreada continua $x_s(t)$.
 - (c) Calcule y grafique el espectro $X(e^{i\omega})$ de la señal discreta x[n].
 - (d) Calcule la respuesta en frecuencia $H(e^{j\omega})$ del sistema discreto, y grafique el módulo y la fase en función de ω .
 - (e) Calcule y grafique el espectro $Y(e^{j\omega})$ de la señal discreta y[n] a la salida del filtro $H(e^{j\omega})$.
 - (f) Calcule y grafique el espectro $Y_s(f)$ de la señal muestreada continua $y_s(t)$.
 - (g) Calcule y grafique el espectro de la señal continua de salida $y_c(t)$.
 - (h) Calcule $y_c(t)$.
 - (i) Calcule y grafique la respuesta en frecuencia del sistema continuo $H_c(f) = Y_c(f)/X_c(f)$.



2. Cuando un SLIT se excita con la entrada

$$x[n] = 5\left(\frac{1}{8}\right)^n u[n] - \left(\frac{7}{8}\right)^n u[-n-1]$$
 la salida es $y[n] = 6\left(\frac{1}{4}\right)^n u[n]$

- (a) Calcule las transformadas Z de x[n] y de y[n], especificando sus regiones de convergencia.
- (b) Determine la función de sistema H(z) = Y(z)/X(z) y grafique el diagrama de polos y ceros.
- (c) Especifique la región de convergencia, justificando su respuesta.
- (d) Calcule h[n], la respuesta impulsiva del sistema, e indique si el sistema es (i) causal, (ii) estable,
- 3. Dada la sucesión de longitud finita $x[n] = \cos(\omega_0 n)$ con $0 \le n \le N-1$, N = 8 y $\omega_0 = 3 \times 2\pi/N$.
 - (a) Calcule $X(e^{j\omega})$ aplicando propiedades y grafique $X(e^{j\omega})$.
 - (b) Calcule la X[k], la TDF de N puntos de x[n] y grafique X[k] en función de k.
 - (c) Calcule $X_2[k]$, la TDF de 2N puntos de x[n] y grafique $X_2[k]$ en función de k.
 - (d) Calcule $X_3[k]$, la TDF de 2N puntos de la sucesión $x_3[n] = \{x[n], x[n]\}$ que surge de concatenar dos veces a la señal x[n] y grafique $X_3[k]$ en función de k.
 - (e) Calcule $X_4[k]$, la TDF de N/2 puntos de x[n].
 - (f) Exprese $x_4[n]$ la TDF inversa de $X_4[k]$ en función de x[n] y grafique $x_4[n]$.
- 4. El sistema de procesamiento discreto de señales continuas de la figura del ejercicio 1 se utilizó para implementar un filtro FIR de fase lineal con respuesta en frecuencia $H(e^{i\omega})$. Sabiendo que:
 - El retardo de grupo del FIR es τ;
 - Los conversores C/D y D/C introducen un retardo adicional de n_0 muestras cada uno;
 - La respuesta en frecuencia del sistema continuo $H_c(f)$ se midió experimentalmente, y se dispone del vector de datos de la fase en radianes $[0:\Delta p:Pmax]$, correspondientes al vector de frecuencias $f = [0:\Delta f:F_s/2]$;

indique los pasos necesarios para graficar y comparar la fase (teórica) del FIR $H(e^{i\omega})$ con la fase medida eliminando el aporte de los conversores.

Series y transformadas de Fourier

Serie de Fourier (SF)	Transformada de Fourier (TF)	Transf. de Fourier de señales discretas (TFTD)	Transf. Discreta de Fourier (TDF)
$\tilde{x}(t) = \sum_{k} c_{k} e^{j\frac{2\pi}{T}kt}$	$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$
$c_{k} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}kt} dt$	$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n}$	$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$
Varios	$\sum_{k=0}^{N-1} \rho^k = \frac{1-\rho^N}{1-\rho}, \ \sum_{k=0}^{\infty} \rho^k = \frac{1}{1-\rho}$	$\operatorname{sinc}(x) = \frac{\operatorname{sen}(\pi x)}{\pi x}$	$\sum_{n=0}^{N-1} e^{-j\omega n} = e^{-j\frac{N-1}{2}\omega} \frac{\operatorname{sen}(N\omega/2)}{\operatorname{sen}(\omega/2)}$

Muestreo y reconstrucción

dominio frecuencial (Ω)		dominio temporal		dominio frecuencial (f)
$X(e^{j\omega}) = \frac{1}{T_s} \sum_k X_c \left[\frac{1}{T_s} (\omega - 2\pi k) \right]$	⇔	$x[n] = x_c \left(n T_s \right)$	\Leftrightarrow	$X(e^{j\omega}) = \frac{1}{T_s} \sum_k X_c \left[\frac{f_s}{2\pi} (\omega - 2\pi k) \right]$
$Y\!\left(e^{j\omega}\right) = H\!\left(e^{j\omega}\right) X\!\left(e^{j\omega}\right)$	\Leftrightarrow	$y[n] = x[n] \ast h[n]$	\Leftrightarrow	$Y\!\left(e^{j\omega}\right) = H\!\left(e^{j\omega}\right) X\!\left(e^{j\omega}\right)$
$Y_s(\Omega) = \left. Y(e^{j\omega}) \right _{\substack{\omega = \Omega rac{2\pi}{\Omega_s} \\ = \Omega Ts}}$	\Leftrightarrow	$y_s(t) = \sum_n y[n] \delta(t - nT_s)$	\Leftrightarrow	$Y_s(f) = \left. Y(e^{j\omega}) \right _{ egin{array}{c} \omega = frac{2\pi}{fs} \ = 2\pi f Ts \end{array} }$
$egin{aligned} Y_r\left(f ight) &= H_r(\Omega)Y_s\left(\Omega ight) \ &= T_s H\left(e^{j\omega} ight)X\left(e^{j\omega} ight)ig _{\omega=\Omegarac{2\pi}{\Omega s}} \ &=\Omega T s \end{aligned} \ \left\{\left.H\left(e^{j\omega} ight)ig _{\omega=\Omegarac{2\pi}{2}}, ight.$	⇔	$y_r(t) = \sum_n y[n] h_r(t - nT_s)$	⇔	$egin{align} Y_r\left(f ight) &= H_r(f)Y_s\left(f ight) \ &= T_s \left.H\left(e^{j\omega} ight)X\left(e^{j\omega} ight)ig _{\substack{\omega = frac{2\pi}{fs} \ = 2\pi fTs}} \ \left.\left.H\left(e^{j\omega} ight)ig _{\substack{\omega = frac{2\pi}{fs}}} ight. \end{array}$
$H_{c}\left(\Omega\right)\!=\!egin{cases} H\left(e^{j\omega} ight)ig _{\omega=\Omegarac{2\pi}{\Omega s}},\ =\Omega Ts \ ext{si }\left \Omega ight <rac{\Omega _{s}}{2}=rac{\pi}{T_{s}},\ 0, ext{ caso contrario.} \end{cases}$				$H_c\left(f ight) = \left\{egin{array}{l} H\left(e^{j\omega} ight)ig _{\omega=frac{2\pi}{f_s}} \ = 2\pi f T s \ & = 2\pi f T s \ & ext{si} \ f < rac{f_s}{2} = rac{1}{2T_s}, \ 0, & ext{caso contrario.} \end{array} ight.$

Ventaneo

$$x[n] = u[n]v[n]$$
 \Leftrightarrow $X(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} U(e^{j\theta})V(e^{j(\omega-\theta)})d\theta$

Transformada Z

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| < a \quad \Leftrightarrow \quad x[n] = -a^n u[-n - 1]$$
$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > a \quad \Leftrightarrow \quad x[n] = a^n u[n]$$

Raíces múltiples

$$z^{N} = re^{j\theta} \implies z_{k} = \sqrt[N]{r}e^{j\frac{\theta+2\pi k}{N}}, \ k = 0, 1, ..., N-1$$

Diseño de filtros

Transformada Bilineal:
$$s = \frac{2}{T} \frac{(1-z^{-1})}{(1+z^{-1})}, \quad z = \frac{(2/T+s)}{(2/T-s)}, \quad \omega = 2\arctan(\pi f T_d), \quad f = \frac{1}{\pi T_d} \tan\left(\frac{\omega}{2}\right)$$

Invariación al impulso: $h[n] = T_d h_c(t)|_{t=nT_d}$