

SEGUNDO PARCIAL DE ÁLGEBRA Y GEOMETRÍA (16 - 05 - 2024)

APELLIDO Y NOMBRE CARRERA: TEMA 1 NOTA:

- a) Usando propiedades de determinante, hallar $k \in \mathbb{R}$ de modo que $det(C^{-1} \cdot B) = \frac{1}{8}$
- b) Para k=2, calcular $A^T \cdot B^{-1}$
- Sean $\vec{u} = (1, 0, -2)$ y $\vec{v} = (1, -2, 2)$, determinar las componentes de un vector \vec{t} con la misma dirección y sentido que \vec{v} y tal que $||\vec{t}|| \cdot proy_{\vec{v}}\vec{u} \langle 2\vec{v}, \vec{v} + 9\vec{u} \rangle = 0$.
 - b) Dados los puntos A(0,1,3), B(1,0,1) y C(-2,a,3), hallar $a \in \mathbb{R}$ sabiendo que el área del triángulo $\stackrel{\triangle}{ABC}$ es $\sqrt{\frac{21}{4}}$. ¿Existe un único valor de a? Justificar.
- 3. Sean Q(-3,1) y R(1,2) vértices de un triángulo.
 - Allar, de forma analítica, un punto P de manera que el triángulo $\stackrel{\triangle}{PQR}$ sea isósceles y rectángulo en Q. ¿El punto hallado es único?
 - b) Escribir las ecuaciones paramétrica e implícita de la recta que contiene a la hipotenusa.
- Dados el punto D(1,0,2), la recta $L: \begin{cases} 3x 2y = -1 \\ x 2z = -5 \end{cases}$ y el plano $\pi: 2x y z 3 = 0$.
 - a) Hallar la ecuación de la recta L' que pasa por D y es perpendicular a π .
 - b) Encontrar la ecuación del plano π' que pasa por D y contiene a la recta L.
- Dados los vectores $\vec{u} = (2, -1, 1)$ y $\vec{v} = (1, -6, 2)$, determinar para que valor de $b \in \mathbb{R}$, el vector $\vec{w} = (4, b, 1)$ se puede escribir como combinación lineal de \vec{u} y \vec{v} .
 - b) Analizar si $S = \{(x, y, z) \in \mathbb{R}^3 : z = x + y^2\}$ es un subespacio vectorial de \mathbb{R}^3 .

Firmar SOLO la última hoja