	,	,		
DDIMED DADGIAL DE	ANTATICIC		TT	(00.09.17)
PRIMER PARCIAL DE .	ANALISIS	IVIAIFIVIAIIUU	- 11	[[[]]]
I TOTAL TITLE DE	1111111010	1111111111111		(O O O = I I)

Tema 1

APELLIDO Y NOMBRE:

L.U.Nº:

NOTA:

1. Determinar y graficar el dominio de
$$z = f(x, y) = \begin{cases} \frac{x-2}{(x-2)\sqrt{x^2+y^2-4}} & \text{si } (x, y) \neq (0, 0) \\ 3 & \text{si } (x, y) = (0, 0) \end{cases}$$

- (a) Graficar el conjunto de puntos interiores, exteriores y frontera de Dom f(x, y).
- (b) Clasificar el Dom f(x, y) en abierto, cerrado, ni abierto ni cerrado, acotado, conexo y/o simplemente conexo.
- (c) Hallar el conjunto de puntos donde es continua f(x,y). Justificar su respuesta.
- (d) Clasificar cada una de las discontinuidades que sea posible.
- 2. Dada $g(x,y) = |y^2 9| + e^x 1$
 - (a) Hallar (usando la definición sólo si es necesario) las derivadas parciales g_x y g_y en el punto Q(0,-1).
 - (b) A partir del gráfico de la curva $C: \begin{cases} z = g(x,y) \\ x = 0 \end{cases}$ (en el plano x = 0), explicar qué ocurre con $g_y(0,3)$. Verificar analíticamente sus conclusiones.

SEGUNDO PARCIAL DE ANÁLISIS MATEMÁTICO II (16-02-17)

Tema 1

APELLIDO 1	Y NOMBF	₹E:
------------	---------	-----

L.U.Nº:

NOTA:

Nota: Justificar todas sus respuestas.

1. Dada
$$z = f(x,y) = \begin{cases} 3e^x sen(xy) & \text{si } (x,y) \neq (2,2\pi) \\ 2 & \text{si } (x,y) = (2,2\pi) \end{cases}$$
 y los puntos $P_0(0,1)$ y $P_1(2,2\pi)$

- (a) Hallar, si es posible, una ecuación del plano tangente a la gráfica de z = f(x, y) en P_1 .
- (b) Hallar, si es posible, una ecuación de la recta normal a la gráfica de z = f(x, y) en P_0 .
- (c) Si $\begin{cases} x = 2t^2 1 \\ y = (t+1)^2 4 \end{cases}$ usando, si es posible, la regla de la cadena calcular $\frac{dz}{dt}$ en t = 1.
- 2. Dada la superficie $z=g(x,y)=sen|\pi xy|$
 - (a) Calcular la derivada de z = g(x, y) en el punto Q(0, 2) con dirección $\vec{u} = (1, 0)$.
 - (b) Hallar, si existe, la ecuación de la **semirrecta** tangente a z=g(x,y) en el punto P(x,y,z)=(1,2,0) en dirección del vector $\vec{v}=(2,2)$.
 - (c) ¿Existe **recta** tangente en el punto y en la dirección del inciso anterior? Justificar, y en caso afirmativo, dar una ecuación de la misma.