Parcial Correccion

Ejercicio 1:
1) Cual/es de las siguientes acciones nunca generan una llamada al sistema?

a. Asignar memoria a una variable de tipo puntero
b. Leer la hora del sistema
c. Acceder a una variable de tipo puntero
d. Leer los datos de un buzén (mail box)
e. Incrementar en 1 una variable
d. Abrir un archivo
2) El descriptor de un proceso PCB
a. Sirve para almacenar el contexto completo del proceso cuando no este en
ejecucion
b. Entre otras cosas, sirve para almacenar el contenido de la pila del proceso
¢. En un sistema tipo Unix contendra, entre otras cosas, los i-nodos de los
archivos que el proceso tiene abiertos
d. Contiene especificamente informacion de la identificacién y estado del
proceso
e. Ninguna de las anteriores
3) Indicar cuales de las afirmaciones siguientes son falsas:
a. En un sistema con prioridades siempre esta ejecutando el proceso con mayor
prioridad
b. En un sistema de tiempo compartido cuando un proceso se bloquea en una
operacion de E/S, se selecciona otro proceso para que se ejecute
c. Si un sistema soporta multiprogramacion también ofrece tiempo compartido
d. En un sistema de multiprogramacion cuando un proceso se bloquea en una
operacién de E/S, se selecciona otro proceso para que se ejecute
e. Una de las caracteristicas que distingue un sistema paralelo (muy acoplado) de
uno distribuido (poco acoplado) es la cantidad de recursos que tienen en
comun los distintos procesadores

4) En un sistema con una politica de planificacion no apropiativa ¢ Cudles de las siguientes
transiciones entre los estados de los procesos no son normales que se produzca?

a. Ejecucidn -> Espera

b. Ejecucién -> Listo

c. Listo -> Terminacion

d. Listo -> Ejecucion

e. Ejecucién -> Terminacién
f. Espera -> Listo

5) En relacién con las llamadas al sistema ¢ Cudles de las siguientes afirmaciones son
ciertas?

a. Se realizan mediante sencillos saltos a subrutinas (a las rutinas del sistema
operativo que implementan cada servicio)

b. Las llamadas al sistema no comprenden solo tipo de servicios que proporciona



el sistema operativo
c. Normalmente, las llamadas al sistema se realizan directamente desde el
programa que escribe el usuario en los lenguajes convencionales de alto nivel
d. Las llamadas al sistema requieren cambio de modo.
e. Ninguna de las afirmaciones anteriores es cierta.

Ejercicio 2:

1) Con respecto a los modelos de comunicacidn de los procesos, se puede decir que:
a. El modelo directo es siempre sincrono.
b. El modelo indirecto no puede ser sincrono.
c. El modelo directo simétrico es siempre asincrono.
d. El modelo directo asimétrico unidireccional puede ser sincrono.
e. El pasaje de mensajes es el Unico modo de comunicacién en multiples
procesadores.
f. La memoria compartida permite comunicacidn indirecta
2) En relacidn con la planificacidn de procesos es cierto que:
a. La politica de planificacion por Round-Robin genera problemas de inanicidn.
b. El Proceso Ocioso sélo tiene sentido en las politicas de planificacion
apropiativas
c. La técnica del envejecimiento en la planificacién por prioridades consiste en
aumentar gradualmente la prioridad de los procesos que estan en el estado de
Esperando = (bloqueado).
d. La politica de planificacidén El mas corto primero (SJF), tiene en cuenta el
tiempo que los procesos han estado en la cola de Listo.
e. Las opciones 1, 3 y 4 son ciertas
f. Ninguna de las anteriores es cierta
3) En cuanto a los hilos (threads) y al mecanismo de sincronizacién de procesos, es cierto
que:
a. Un sistema operativo que soporte hilos no utiliza inhibicion de interrupciones.
b. Los pipes sélo pueden usarse para comunicar hilos de un mismo proceso.
c. Es suficiente el uso de la instruccién Test&Set, en un entorno multiprocesador
monousuario que soporte hilos, para evitar las condiciones de carrera.
d. En la planificacién Round-Robin, en un semaforo un hilo que se desbloquea
por la operacion subir no tiene prioridad para acceder inmediatamente a la
CPU.
e. Los mutex tienen el mismo comportamiento que los semaforos en los hilos.
4) Indicar cudl de las siguientes afirmaciones es cierta en referencia a las llamadas al
sistema:
a. El cddigo escrito por el usuario llama a la rutina de interfaz de usuario
mediante la instruccion de excepcién trap.
b. La rutina de tratamiento de interrupcién se encarga de llamar a la rutina de
servicio del sistema operativo adecuada a la solicitud del programa de usuario.
c. La rutina de servicio del sistema operativo es una rutina que sirve de interfaz
entre el sistema operativo y el hardware del ordenador
d. Ninguna de las anteriores
5) En relacién con las llamadas al sistema es cierto que:
a. Las llamadas al sistema sélo pueden cambiar el estado del proceso que las



invoca

b. Las llamadas al sistema mediante una rutina de interfaz que utilice un Trap,
sélo funciona en una maquina monoprocesador.

c. Un proceso que esté Listo no podra invocar una llamada al sistema hasta que
no pase al estado de Ejecutando.

d. El numero de llamadas al sistema esta limitado por el nimero de
interrupciones software del procesador.

Ejercicio 3:

1) ¢Cual de las siguientes acciones no genera una llamada al sistema?
a. Pedir la hora.
b. Abrir un archivo.
c. Dormirse durante n segundos.
d. Acceder a datos de la pila.
2) En relacién con la planificacidn de procesos es cierto que:
a. Dos procesos pueden compartir el mismo descriptor de proceso.
b. La invocacion de una llamada al sistema por parte de un proceso, puede
provocar que otro proceso pase del estado Esperando a Listo.
c. Siempre que se invoca una llamada al sistema, se produce un cambio de
contexto
d. La politica de planificacién el mas corto primero es apropiativa
3) Tenemos un planificador de procesos por colas de prioridad apropiativo. Los procesos
pueden tener 3 prioridades: 3 (la mayor), 2 y 1. Para los procesos con prioridad 1y 2, a
igualdad de prioridad se gestiona por FCFS (Primero en Llegar Primero en Servir). Para
los de prioridad 3 se gestiona por RR (Round Robin). Suponemos que se estd
ejecutando un proceso de prioridad 2. Indicar cual de las siguientes situaciones
provocaria necesariamente un cambio de contexto.
a. Llega un proceso nuevo de prioridad 3 a la cola de listos
b. Llega el fin de un quantum de tiempo
c. El proceso en ejecucidn realiza un Bajar (Wait) sobre un semaforo
d. Ninguna de las anteriores
4) Supdngase que se dispone de una pista de aterrizaje controlada por un controlador
aéreo que da érdenes a los pilotos que se lo pidan. Suponiendo que sélo hay un
controlador, varios pilotos, que todos ellos estan simulados con procesos y que se
sigue una politica de planificacién FIFO, ¢qué ocurrira en el siguiente caso?

Controlador Piloto
signal(disponible) wait(disponible)
signal(trabajo) signal(trabajo)
Establecen contacto

wait(pista) wait(aterriza)
signal(aterriza) aterrizaje

Espera fin aterrizaje Fin aterrizaje
wait(finaterriza) signal(finaterriza)

signal(pista)
Con valores para todos los semaforos = 0 excepto para pista que vale 1.
a. Si el controlador esta libre y dos pilotos piden atencién al controlador



simultdneamente, pueden llegar a estrellarse.
b. Es posible que, algin avién no aterrice nunca
c. Los aviones aterrizan uno a uno y sin problemas.

d. Ninguna

Ejercicio 4:

1) Sincronizar mediante semaforos tres procesos de tal manera que luego de ejecutarse
la seccidn critica del proceso 1 se ejecute la del proceso 2 o del proceso 3 en forma
alternada, es decir:

(P1, P2), (P1, P3), (P1, P2), (P1, P3)

Indicar claramente el tipo y el valor de inicial de los semaforos. Recuerde que no
puede utilizar variables globales para la sincronizacion

//SEMAFOROS BINARIOS

Semaforo_pl=1;

Semaforo_p2 = 0;

Semafoto_p3 =0;

Proceso_p1l
While(1){
Wait(semaforo_p1);
Tarea P1;
Signal(semaforo_p2);
Wait(semaforo_p1);
Tarea P1;
Signal(semaforo_p3);
}
Proceso_p2
While(1){
Wait(semaforo_p2);
Tarea P2;
Signal(semaforo_p1);
}
Proceso_p3
While(1){
Wait(semaforo_p3);
Tarea P3;
Signal(semaforo_p1);
}
NOTA-= esta solucidén no es tan eficiente porque se duplica la seccidn critica, pero es
valida ésea te la toman bien.



La otra opcidn “EFICIENTE” seria esta:

[k Ll J

-

-
L

5.
.
!

2) Cada uno de los eventos enumerados a continuacién interrumpe el flujo de
ejecucidn. Responda las siguientes preguntas sobre cada evento:
a. (¢El evento es sincrdnico o asincrénico?)
b. ¢Qué estado debe salvarse y restaurarse?
c. ¢Quién (persona que llama, destinatario de la llamada, etc.) debe
guardar y restaurar este estado?
Su respuesta debe analizar los componentes genéricos de las maquinas
(por ejemplo, “el puntero de instruccién”) en lugar de estar orientado
hacia una arquitectura de maquina en particular

a. Llamada a procedimiento
(Sincrénico, Deben salvarse registros, variables locales, direccion de

retorno (IP), parametros que se le pasan, etc. Guarda el llamador)
b. Llamada al sistema
(Sincrénico, Debe guardar el estado PCB proceso llamador, lo guarda el

kernel (Destinatario))

c. Cambio de proceso causado por un intervalo de tiempo que expira.
(Asincrénico (nunca sabe cuando lo van a interrumpir), Debe guardar
todo el PCB, lo guarda el manejador de eventos (que no es ni el

llamador ni el destinatario))

Flor



Ejercicio 1:

3) en un multiprocesador, ¢cual/es de los siguientes mecanismos de exclusion
mutua son apropiados?

a. inhibicidn de interrupciones
b. variable de condicion
C. monitores
d. spinlock
e. paso de mensajes
f. todos estos mecanismos se pueden utilizar normalmente en un ordenador
multiprocesador
5) en lo referente al concepto de multiprogramacion ¢ cual/es de las siguientes
afirmaciones son ciertas?
a. solamente tiene sentido en un sistema de tiempo compartido
b. los sistemas de tiempo real suelen ser multiprogramados
c. notiene sentido en las arquitecturas paralelas (multiprogramacion soporta el
paralelismo)
d. su utilizacidon depende de la politica de planificacion del sistema (se usa para
todas)
e. la multiprogramacién requiere considerar aspectos de proteccién en el
sistema
Ejercicio 2:

1) ¢Cuales de los siguientes tipos de sistemas les afecta mas el criterio “tiempo

de retorno” (o turnaround time) a la hora de disefar su planificador?
a. sistemas de tiempo real
b. sistemas de tiempo compartido
c. sistemas paralelos
d. sistemas batch (libro tanem 164)
e. atodos porigual

2) en cuanto a los procesos y los archivos es cierto que:

a.

el resultado de la escritura concurrente de dos procesos no cooperantes
sobre un archivo es impredecible ya que depende de la politica de
planificacion de procesos que aplique el sistema



b.

el campo “contador de aperturas” de un archivo en la tabla de
correctas: e, a

3) en cuanto a la evolucién histdrica de los SO, indique qué afirmacién es cierta:

a. el sistema off-line surgié para acelerar las operaciones de entrada/salida en
sistemas operativos basados en spool — tarjetas perforadas

b. el secuenciador automatico de trabajos no evitaba el tiempo que la cpu
pasaba ociosa mientras el proceso hacia una operacion de e/s — damian V,
sebastian F

c. latécnica de spooling se usa actualmente Unicamente en sistemas batch

d. los sistemas de tiempo compartido no dieron origen a los sistemas
multiprogramados

Ejercicio 4:

2. Se ha visto en teoria un conjunto de politicas de planificacién y un conjunto de
mecanismos para implementar estas politicas. Los objetivos de un algoritmo de
planificacion son:

a.
b.

> @ o o o

maximizar la terminacion de tareas por unidad de tiempo. throw put
maximizar el nUmero de usuarios interactivos recibiendo respuesta en un
tiempo aceptable. tiempo compartido

ser predecible.

minimizar la sobrecarga

balancear la utilizacién de recursos

balancear respuesta y utilizacién

evitar tareas pospuestas indefinidamente

ordenar las tareas en funcién de su importancia y requerimientos de
eficiencia

favorecer a procesos que mantienen recursos clave no apropiables
favorecer procesos con comportamiento deseable (bajos page faul, por ej)
reducir el servicio cuando la carga resulta excesiva

cual/es de los objetivos anteriores se esta teniendo o no en cuenta cuando: explique

i. los procesos compitiendo por la cpu se complementan en sus requerimientos de
recursos — g) al estar aplicando envejecimiento

ii. un sistema de control de procesos de tiempo real monitoreando a una estacién de
servicios requiere rapida respuesta — c) el planificador intenta también cumplir con
ser predecible, para un conjunto de procesos con prioridades asignadas

ordenar los requerimientos - eficiencia



iii. un proceso devuelve frecuentemente la cpu antes de que su quantum expire.

no h) en este caso, se deberia desalojar al proceso de menor importancia para poder
liberar el recurso que esta alocado por el mismo. asi se podria ejecutar el proceso
que arribd. no al revés, ya que cuando hay una competencia entre dos procesos de
diferentes prioridades el proceso de menor prioridad es el que se ejecuta -

Extra:

1) en un sistema con algoritmo de planificacién por prioridades apropiativo con
colas multinivel, donde cada cola de prioridad estd gestionada mediante el
algoritmo FIFO.

a. cuando un proceso pasa al estado de Ejecutando, permanecera en
este estado hasta que se bloquee en espera de una E/S o termine su
ejecucidn — F, es apropiativo y si llega un proceso a una cola con
mayor prioridad deberia apropiarse para que se ejecute el recién
llegado

b. Elsistema operativo no desbloquea a un proceso (pasa de esperando
a listo) si existe otro proceso de mayor prioridad que también tiene
gue ser bloqueado. — F? creo que la prioridad solo afecta a listo ->
ejecutando y viceversa

c. este algoritmo de planificacion evita la inanicion -> F, al ser por
prioridad si constantemente llegan procesos de mayor prioridad,
aquellos con menor prioridad deberan esperar continuamente

d. ninguna, V



3) Dado el siguiente programa que maneja dos semaforos, uno B, binario, y otro C, de cuenta:
for (i="1;i<=N;i++) {
wait(B); wait(C);
{ mas codigo }
signal(B); signal(B);
signal(C); signal(C); }
a) Elvalor final de B es N+1 y el de C también.
b) Elvalor final de B es 1 y el de C también.
¢) El programa no acaba nunca.

d) Ninguna es correcta.

b es binario y ¢ de cuenta, cuando el semaforo es binario el valor va a ser 0 o 1 aunque
haga dos signal(b)
d. es la respuesta correcta

4) Un proceso que esta bloqueado (en espera) puede salir de tal estado si:

a. Algun proceso realiza cualquier llamada al sistema.

o

. Se produce una interrupcion.

. Cualquier proceso independiente finaliza su ejecucion.

a M

. Cualquiera de las anteriores.

a) Falso, por ej, un proceso realiza fopen() y no afecta en nada.

b) Verdadero, por gj, el proceso termina de realizar una E/S y se realiza una
interrupcion.

c) falso

d) Falso.

1.- Al resolver algunos problemas con varios hilos (threads), a veces es Util que todos los hilos se encuentren en un lugar del
codigo. Esto normalmente se hace con una operacion llamada barrera. Funciona de modo que cuando los hilos llaman a la
funcion Barrera (), ninguno regresa hasta que todos los hilos han llamado a la funcion. Por gjemplo, puede encontrar un codigo
similar a:

{

Hilosejecutando(); // Los hilos pueden terminar en diferentes momentos
Barrera(ThreadlD();

Hilosejecutandoll(); // Los hilos deben comenzar aqui juntos

}

Su trabajo consiste en escribir la funcion Barrera () utilizando solo semaforos. No se le permite utilizar variables compartidas que
no sean los seméaforos. Asegurese de mostrar sus valores iniciales para el seméaforo. Puede asumir que hay una constante global
NUM_HILOS que indica la cantidad de hilos en el sistema. Los ID de hilos son nimeros enteros que comienzan en 0 y van a
NUM_HILOS-1. NUM_HILOS es menor que 100. Para simplificar las cosas, puede asumir que Barrera () solo se llama una vez y que
todos los hilos participan en la barrera.



sem_t barmera, contadorDeslogueados:
sem_int(&contadorDesloqueados, 0, NUM_HILOS),;
Barreralint id}
if{sem try wait(&contadorDeslogueados)<O} // Si soy el ultimo hilo
sem_post(&barrera);
}

}else{/¥ Si no soy el ultimo hilo
Sem_wait({kbarrera) /Me quedo en la bamera

Una de las mejores respuestas — segun Federico



