TERMODINÁMICA QUÍMICA PARA INGENIERÍA SEGUNDO EXAMEN PARCIAL 14 DE JULIO DE 2020

EJERCICIO 3

Se solicita preparar 1000 ml de una mezcla 50% en peso de n-decano (1) + dioxano (2).

a) El ingeniero encuentra en literatura dos ecuaciones para representar el volumen de exceso de la mezcla ¿Cuál de las siguientes expresiones debe elegir para realizar los cálculos y por qué? Justifique su respuesta y utilice el modelo elegido para realizar los próximos pasos del ejercicio.

i)
$$V^{E} = -x_{1}x_{2}[A_{0} + A_{1}(1 - 2x_{1}) + A_{2}(1 - 2x_{1})^{2}]$$

$$H^{E} = -x_{1}x_{2}[A_{0} + A_{1}(1 - 2x_{1}) + A_{2}(1 - 2x_{1})^{2}]$$
ii)
$$V^{E} = -x_{1}A_{0}[x_{2} + A_{1}(1 - 2x_{1}) + A_{2}(1 - 2x_{1})^{2}]$$

$$H^{E} = -x_{1}A_{0}[x_{2} + A_{1}(1 - 2x_{1}) + A_{2}(1 - 2x_{1})^{2}]$$

- b) Calcule la masa necesaria de cada compuesto para lograr el volumen de solución requerido.
- c) Determine el calor que debe ser extraído o incorporado, para mezclar las cantidades necesarias de manera isotérmica. Indique si el líquido en el baño termostático debe estar más caliente o más frío que la mezcla
- d) Para conocer el comportamiento de la mezcla ante pequeños cambios en la composición en el mezclador, evalúe \overline{V}_1 .

Datos con los que cuenta el ingeniero:

-	PM	V	
	(g/mol)	(mL/mol)	
n-decano	142.3	201.83	
1,4- dioxano	88.1	75.47	

Coeficientes de la entalpía de exceso de la mezcla:

Propiedad	T (K)	A_0	$\mathbf{A_1}$	\mathbf{A}_{2}
Volumen de exceso (mL/mol)	298.15	-4.617	0.1835	-0.4826
Entalpía de exceso (J/mol)	298.15	-8090.8	1425.2	-1403.3