Parcial 2020

1. Describa las diferencias entre un cambio de modo y un
cambio de contexto en un sistema operativo. ;Por qué el
sistema operativo necesita realizar esos cambios?

Un cambio de contexto ocurre cuando, por necesidad del proceso que se ejecutando (por ej,
necesita realizar una E/S) o porque lo determina el planificador (por ej, se termino su tiempo
de uso de procesador), se debe frenar la ejecucion del proceso y comenzar ejecutar otro
proceso restaurando su PCB, en otras palabras, se cambia el estado de los procesos(?).

Por otro lado, un cambio de modo ocurre cuando se necesita cambiar los privilegios de un
proceso entre modo usuario y modo kernel (por ej, cuando ocurre una interrupcion se cambia
a modo kernel por si el codigo de procesamiento de la interrupcion tiene instrucciones
privilegiadas).

El cambio de contexto es necesario para que el CPU pueda ejecutar multiples programas a la
vez y guardar o restaurar el contexto en el que se estaba ejecutando la ultima vez que utilizo
el procesador (el contexto incluye su estado, su PC, sus punteros a memoria, etc)

El cambio de modo es necesario para que solo ciertos procesos tengan acceso completo al
procesador, sus instrucciones, sus registros y memoria, con el fin de mantener la seguridad
del SO y evitar interferencias de los programas de usuario.

Por ej, las instrucciones relacionadas con el manejo de memoria solo deberian ser utilizadas
por procesos que esten en modo kernel.

1. Si tiene un sistema operativo que esta disefiado para una sola CPU y desea adaptarlo a un sistema de multiples CPU, describa los tipos
de cambios / adiciones al software o hardware que necesitaria realizar en relacién con la administracion de procesos y por qué.

Para adaptar el disefio de una sola CPU a uno de multiples CPU, debe decidir si tener una
cola de listos comun o agregarle a cada CPU su propia cola privada.

En el caso de elegir la segunda se debe agregar algun mecanismo de balanceo de carga
para evitar que algunos procesos tengan mucha carga y otros poca. Esto se lo puede realizar
a traves de push migration (una tarea es enviada de un procesador a otro) o de pull migration
(un procesador inactivo se trae una tarea de otro procesador mas cargado).

Relacionado al balanceo de carga, se agrega la necesidad de definir una politica de afinidad
de procesador ya que es costoso cambiar a una tarea de procesador (se debe vaciar la
cache del procesador del cual se va y llenar la cache del procesador al cual llega). En la
politica soft affinity el SO intenta mantener al un proceso corriendo en el mismo procesador
pero no garantiza que lo hara, de forma contraria, en la politica hard affinity se puede
especificar al proceso en que procesadores se puede ejecutar a traves de system calls.

(G — 220 hasta 225)

2. En relacién con los threads es cierto que: (Justifique su respuesta)

1. Cuando se crea un thread, su c6digo hay que cargarlo desde el fichero ejecutable a memoria.
2. Cada thread tiene su propia pila.

3. Todos los threads que existen en el sistema en un momento dado, comparten el mismo codigo.
4. Descomponer un proceso en dos threads sélo puede ejecutarse mas rapido si el sistema cuenta, al menos, con dos procesadores.

1) Falso, porque el codigo del hilo es compartido con el proceso que lo creo (y por lo tanto, el
fichero ejecutable) entonces cuando el hilo es creado, utiliza ese mismo codigo que ya fue
cargado.

2) Verdadero, ya que cada hilo llama a distintos procedimientos por lo que cada uno tiene su
historial de ejecucion, entonces, es necesario que cada hilo tenga su propia pila. (T — 105)

3) Falso, los hilos solo comparten el codigo del proceso al que pertencen, es decir, cada
grupo de hilos que pertenece a un proceso comparte la seccion de codigo del mismo, pero
otro grupo de hilos que pertenece a otro proceso distinto comparte otro codigo. Por lo tanto,
es falso que todos los hilos que existen comparten el mismo codigo.

4) Falso. Ejemplo: uno de los dos hilos necesita realizar una E/S, entonces, se realiza un
cambio de contexto y comienza a ejecutarse el segundo hilo. Si no hubiera dos hilos, todo el
proceso hubiera quedado en espera fuera de ejecucion debido a que se llego a un punto
donde se necesitaba de una E/S, en cambio, como si tenia dos hilos, mientras la otra parte
esperaba, la segunda parte seguia ejecutandose. De esta manera, gracias a la concurrencia,
a pesar de tener un solo procesador, si puede ejecutarse un proceso mas rapido.

1.- Explique como se puede implementar un semaforo. Brinde un escenario dénde sea mas eficiente utilizar
spinlock que locks bloqueantes.

Un semaforo se puede implementar a traves de la espera ocupada, es decir, cuando un
proceso no puede pasar el semaforo, queda ciclando hasta poder acceder a decrementar el
semaforo, esto claramente genera un gasto innecesario del tiempo del CPU que podria ser
aprovechado por otros procesos. Una mejor alternativa es implementar el semaforo sin esta
espera ocupada, de manera que cuando un proceso no pueda decrementar un semaforo, se
suspenda a si mismo, sea colocado en una cola de espera asociada a dicho semaforo y su
estado cambie de corriendo a en espera. Luego, el planificador elige otro proceso para
ejecutar y no se desperdicia tiempo de CPU.

(G — 274)

A diferencia de un lock bloqueante, un spin lock tiene como ventaja que no necesita realizar
un cambio de contexto, por lo tanto, en un sistema multicore puede resultar en una mayor
eficiencia en caso que el lock sea utilizado por poco tiempo, menos que el que tomaria
realizar un cambio de contexto.

Por ej: un proceso da vueltas en un core y el otro proceso esta en la seccion critica, este
ultimo termina rapidamente y el primero accede a la seccion critica, todo sin haber
necesitado un cambio de contexto, lo cual hubiera resultado mas costoso.

(G - 272)

2. ;Cual de las siguientes politicas de planificacion es mas adecuada para un sistema de multiproceso de
tiempo compartido? Justifique su respuesta

1. Primero el trabajo mas corto.
2. Round-Robin.

3. Prioridades.

4, FIFO.

La planificacion mas adeducado es Round-Robin ya que al haber multiples usuarios
utilizando el sistema, todos pueden ir ejecutando sus tareas de manera equitativa sin que
algunos usuarios monopolicen el uso del CPU ya sea porque sus procesos llegaron antes o
por tener mayor prioridad.

Por lo tanto, el reparto del tiempo del procesador se reparte de manera justo y no hay
posibilidad de inanicion, aunque, para que el rendimiento sea optimo, se debe elegir un
tiempo de quantum adecuado, ni muy grande ni muy chico.

1.- ;Puede un sistema detectar inanicion? Justifique su respuesta, si es S explique como lo puede realizar, si es

No explique como puede manejar este problema.

La inanicion es un problema que surge principalemnte en la planificacion por prioridades y no
puede ser detectada por el sistema. Sin embargo, a este problema se lo puede manejar a
traves del “envejecimiento” de los procesos, es decir, cuando un proceso esta demasiado
tiempo esperando para ejecutar y no lo consigue (debido a que otros procesos con mayor
prioridad son seleccionados para ejecutar) se le aumenta la prioridad hasta que consiga ser
ejecutado.

1.- Suponga que tiene un sistema con cuatro hilos (threads), una variable compartida y un lock

compartido. El codigo se escribid de tal manera que cualquier acceso de un hilo a la variable

compartida siempre tendria el lock en ese hilo para su acceso. ;Puede este sistema tener una

condicion de carrera que involucre |a variable compartida? Justifica tu respuesta
Un lock permite que un hilo acceda al mismo y lo bloquee para que ningun otro hilo puede
acceder a dicho lock hasta que el hilo que lo accedio lo libere. Por lo tanto, este sistema no
puede tener una condicion de carrera que involucre a la variable compartida ya que, como se
describe en el enunciado, cada vez que se quiere acceder a dicha variable se debe obtener
el control del lock que la “protege”, es decir, pueden modificar/leer la variable de a uno a la
vez respetando la exclusion mutua, lo cual permite evitar la condicion de carrera.

2.-Suponga dos hilos con una variable compartida x que gjecutan las siguientes instrucciones

1 P2

=10 = 0;

m=x+1; X=x+1;
=%+ 1; X =x+1;
w=x-1; X =x-1;
=x-1; X=x—T;
if (x==1) if (x==1)

Printf(*Hola ...") Printf{*Hola ...")

iEste cadigo puede mostrar el mensaje "Hola ..."? Si la respuesta es afirmativa, llustre su secuencia numerando
las instrucciones con el orden en que se ejecutan. Si es negativa, explique su respuesta.

Si, es posible

Instruccion |Proceso | Valor X
x=0 P1 0
Cambia la ejecucion a P2
x=0 P2 0
X=x+1 P2 1
X=x+1 P2 2

Cambia la ejecucion a P1

X=x+1 P1 3
x=x+1 P1
X=x-1 P1 3

Cambia la ejecucion a P2

x=x-1 P2 2
x=x-1 P2 1
If(x==1) P2 1
printf(“Hola”) P2 1

1.- Suponga que la operaddn Signal () en una
variable de condicién no garantiza despertar
solo un hilo, ¥y no garantiza que los despierte
en orden FIFO. ;Podria esto afectar a los
programas que utilizan variables de condicién?

Explica tu respuesta, brinde un ejemplo de un
programa que fallarfa usando esta semantica
més débi

Si puede afectar a los programas que utilizan variables de condicion ya que puede perderse
el orden en el que debian suceder ciertos eventos o realizarse ciertas tareas.

Por ejemplo:

(aclaracion: cv = condition variable)

P1 P2

cv — wait() cv — wait()

lock — acquire() lock — acquire()
lock — release() lock — release()

P1y P2 hicieron cv — wait() y estan suspendidos, luego, un P3 realiza el cv — signal() y
ambos se despiertan pero no en el orden FIFO, entonces, un proceso que debia adquirir el
lock antes lo terminara haciendo despues ya que el otro proceso consiguio el acceso
perdiendose de esta manera la sincronizacion.

(??? NI IDEA SI ESTA BIEN)

2.- Una pareja se va a divorciar. Para dividir sus propiedades, han acordado el siguiente
algoritmo. Cada mafana, cada uno puede enviar una carta al abogado del otro solicitando un
bien. Dado que se tarda un dia en entregar las cartas, han acordado que si ambos descubren
que han solicitado el mismo articulo el mismo dia, al dia siguiente enviaran una carta anulando
la solicitud. Entre sus propiedades se encuentran su perro Woofer, la caseta del perro, su canario
Tweeter y la jaula del Tweeter. Los animales aman sus casas, por lo que se ha acordado que
cualquier division de propiedad que separe a un animal de su casa es invalida, requiriendo que
toda la division comience desde cero. Ambos quieren desesperadamente a Woofer. Para que
puedan irse de vacaciones (por separado), cada cdnyuge ha programado una computadora
personal para manejar la negociacion. Cuando regresan de vacaciones, las computadoras aun
estan negociando. ;Por qué? ;Es posible un interbloqueo? ;Es posible inanicion? Explique su
respuesta

Como ambos quieren a Woofer, seguramente cada computadora envia una carta a otra
solicitando al perro, pero como ambos solicitan el mismo bien el mismo dia, al dia siguiente
ambos envian una carta anulando la solicitud. Entonces, al tercer dia volveran ambas

computadoras a solicitar a Woofer y asi se repite el ciclo de manera que cuando regresan de
las vacaciones, las computadoras siguen negociando. De esta manera se llega a una
inanicion ya que todos los dias se reinicia la negociacion y ninguna camputadora puede
terminar su ejecucion.

Deadlock no es posible.

Es la pregunta 4 de: https://www.cs.hmc.edu/~jsmallma/cs110/assignment6.html

1.- ;Por qué la planificacién de colas multinivel con retroalimentacién varfan el quantum de tiempo asociado con diferentes colas? ;Cuél seria la desventaja de tener el mismo quantum de tiempo
en todos los niveles?

El objetivo de tener distintas colas con diferente quantum asociado es que los procesos se
separen dependiendo de su tiempo de uso del CPU, de esta manera los procesos que
necesitan menor rafaga de CPU (por ej: los ligados a E/S) tienen prioridad para utilizar el
tiempo del procesador y no necesitan esperar a aquellos que consumen mayor rafaga de
tiempo. Ademas, aquellos procesos mas largos que son movidos a colas inferiores con
mayor quantum, al tener un quantum mas largo provocaran menos cambios de contexto,
obteniendose una mayor eficiencia.

(G —216) (T — 161)

Si se tiene el mismo quantum de tiempo en todos los niveles, se pierde la razon de utilizar
colas multinivel ya que si un proceso completa su quantum no habria justificacion para
moverlo de cola debido a que todas tienen el mismo quanatum. Entonces la desventaja es
que se pierde el beneficio de que aquellos procesos con poco tiempo de rafaga de CPU
puedan acceder rapido al procesador y tambien se reduce la eficiencia.

2- ;Qué es falso acerca del paso de mensajes? Justifique su respuesta

1. Implica una seccion critica en los datos del mensaje.

2. Una recepcidn blogueante implica sincronizacion con el emisor.

3. Un envio bloqueante permite al emisor utilizar el buffer del mensaje cuando se desbloquea.
4. El paso de mensajes se implementa siempre con memaoria compartida.

1. Falso, por ejemplo, si un proceso envia un entero a traves de un pipe a otro proceso, no
hay ninguna seccion critica en los datos del mensaje ya que no hay ninguna variable.

2. Verdadero, porque solo puede continuar si el emisor envia un mensaje, es decir, lo espera
y de esta manera se sincroniza.

3. 7?77 G -168 del pdf

4. Falso, el paso de mensajes no solamente se puede implementar con memoria compartida,
tambien se puede hacer a traves de pipes o mediante cola de mensajes.

(NI IDEA SI ESTA BIEN)

https://www.cs.hmc.edu/~jsmallma/cs110/assignment6.html

2. Se tienen 3 procesos: P1, P2 y P3, con tiempos de
ejecucion: 85, 45 y 118 ms, respectivamente. Si actta el
planificador a largo plazo segun el algoritmo SJF (Short Job
First) se obtiene que: (Justifique su respuesta)

1. Los procesos se encuentran en la lista de preparados en
el orden de llegada: P1, P2 y P3.

2. Los procesos se encuentran en la lista de preparados en
el orden: P2, P1 y P3.

3. Los procesos se ejecutan en el orden de llegada: P2, P1
y P3.

4. Los procesos se ejecutan segun la prioridad que posean
los procesos.

El planificador de largo plazo es el encargada de seleccionar que procesos son admitidos en
el sistema para ser procesados y puestos en la cola de listo, por lo tanto, si la politica de
orden de seleccion es SJF, seleccionara al proceso mas corto de entre todos los procesos
restantes (es decir, que aun no fueron seleccionados). Luego, se obtiene que los procesos
llegan a la cola de listos en el orden P2, P1 y P3, de esta manera (1) es falso y (2) es
verdadero. El (3) tambien es falso ya que el orden de ejecucion dependera de la politica de
seleccién de procesos que tenga el planificador de corto plazo, por la misma razon, (4) es
falso ya que no necesariamente la politica es ejecucion por prioridades.

(NI IDEA SI ESTA BIEN)

1. Si tiene un sistema operativo que esta disefiado para una sola CPU y desea adaptarlo a un sistema de multiples CPU, describa los
tipos de cambios / adiciones al software o hardware que necesitaria realizar en relacion con el primitivas de sincronizacion (blogueos,
etc...) y por que. Liste tres.

2. ;Cuando entra un proceso en estado zombie? Justifique su respuesta

1. Cuando muere su padre y él no ha terminado todavia.
2. Cuando muere su padre sin haber hecho wait por él.
3. Cuando €l muere y su padre no ha hecho wait por él.
4, Cuando €l muere y su padre no ha terminado todavia.

(3) Un proceso entra en estado zombie cuando muere y su padre todavia no ha hecho wait
por el ya que aunque el proceso hijo haya terminado, la entrada del mismo sigue en la tabla
de procesos esperando para ser liberada por el padre y que este lea el estado de salida del
hijo.

(G - 122)

https://www.scs.stanford.edu/10wi-cs140/exams/cs140.sum06.midterm.sol.pdf

snnde un eemplo para giIstiNguir entre un proCeso DICQUeado y un pProcCeso INtero
Proceso bloqueado: Un proceso P1 esta bloqueado cuando esta esperando obtener un
recurso que esta bloqueado por otro proceso P2. Cuando P2 libera al recurso, P1 accede a
dicho recurso y puede continuar su ejecucion.

Ejemplo: P1 necesita escribir un archivo que esta leyendo P2 y lo tiene en modo exclusivo,

una vez que P2 termina, P1 accede al archivo.

Proceso intebloqueado: Un set de proceso esta bloqueado esperando obtener un recurso, el
cual solo puede ser liberado por otro proceso del mismo set.

Ejemplo: Un proceso P1 tiene acceso a un recurso R1 y necesita acceder a un recurso R2,
mientras que otro proceso P2 tiene acceso al recurso R2 y quiere obtener el recurso R1,
entonces, ambos procesos estan interbloqueados ya que estan esperando que un recurso
sea liberado por otro proceso del mismo set, se genera una espera circular.

al de estas transiCiones de estados de un proceso jamas s& produce &n un siEstema NoMma ? Justfigue su respuesta

En un sistema normal un proceso jamas pasa de listo a bloqueado ya que si esta en la cola
de listos quiere decir que es un nuevo proceso que llego recientemente y esta esperando
para realizar su primer uso del procesador o0 es un proceso que estaba ejecutando y por
alguna razon el planificador decidio seleccionar a otro proceso para que use el tiemo del
CPU (por €j, se termino su quantum). En cambio, si esta bloqueado es porque esta
esperando a que un evento externo suceda (por ej, una E/S), pero para que pase a ese
estado tuvo que haber estado utilizando el procesador hasta llegar al punto en que no podia
continuar debido al a necesidad de que ocurra dicho evento.

Entonces, la unica forma de que un proceso pase al estado bloqueado es que este utilizando
el procesador (osea, su estado es ejecutando) y si un proceso esta en estado listo, este no
esta utilizando el procesador.

1.- ;Qué significa espera ocupada (busy waiting)? ;Qué tipos de
espera ocupada hay en un sistema operativo? ;Se puede evitar por
completo? Explique su respuesta.

Espera ocupada significa que un proceso esta esperando que suceda un evento mientras
esta utilizando el procesador, es decir, esta esperando mantiendo al procesador ocupado.
Mas especificamente, en la espera ocupada un proceso esa en un loop esperando que se
cumpla una condicion (por ej: espera que una variable tenga el valor deseado), lo cual
claramente genera un gasto de tiempo al CPU.

La espera ocupada se puede evitar a traves del bloqueo de los procesos, esto es, un proceso
llama al syste call Sleep y queda bloqueado hasta que otro proceso lo despierte con el
system call Wakeup.

(T—124,128)

La pregunta es igual al ejercicio 3 de esta pagina de una parte del libro de soluciones de
alguna edicion del libro de Silberschatz:
https://www.os-book.com/OSE2/practice-exer-dir/5-web.pdf

2.- La siguiente solucion del problema Productor/Consumidor es
correcta. Detalle su respuesta.

semaphore mutex = 0, empty = 0;

yoid Producer() { yoid Consumer() {
down(mutex); down(mutex);
produce(); down(empty);
up(empty); consume();
up(mutex); up(mutex);

La solucion es incorrecta, se debe agregar un semaforo que controle la cantidad de espacios
llenos en el buffer.

El productor deberia hacer down(empty) antes de producir y luego de producir hacer
up(lleno).

El consumidor deberia hacer down(lleno) antes de consumir y luego de consumir hacer
up(empty).

La utilizacion del semaforo mutex es correcta ya que para acceder al buffer (consumir o
producir) primero se debe adquirir el acceso exclusivo del mismo y liberarlo despues de
realizar su tarea.

Respecto a las inicializaciones tambien son incorrectas, mutex debe arrancar en 1 ya que
inicialmente nadie esta utilizando el buffer, empty debe arrancar en N siendo N el tamafio del
buffer ya que arranca vacio y, por esa misma razon, el semaforo lleno debe arrancar en 0.

1.- Suponga que tiene un sistema en el que hay un ciclo en un grafo de espera
del sistema. ;Es esta una sefial definitiva de un interbloqueo? Justifica tu
respuesta.

No, un ciclo en una grafo de espera del sistema no implica que hay un interbloqueo, depende
de la cantidad de instancias de cada recurso.

Si cada recurso tiene una sola instancia entonces si hay interbloqueo ya que cada proceso
del set (de procesos interbloqueados) esta esperando obtener un recurso, el cual solo puede
ser liberado por otro proceso del set

Si no ocurre que cada recurso tenga una sola instancia, entonces no se puede asegurar que
hay interbloqueo ya que un proceso que no forma parte del ciclo podria liberar una instancia
que es necesitada por un proceso del ciclo, de esta manera, el ciclo finalizaria.

(G — 324,325,326)

https://www.os-book.com/OSE2/practice-exer-dir/5-web.pdf

2.- Considere el siguiente cédigo para testear locks y vanables de condicién. Comienza cuando el hilo "principal” llama a ThreadTest (). Realice una traza de
ejecucion de este programa hasta que imprima el mensaje “Pare aqui”. Considere que la planificacion es FCFS y las colas se administran utilizando FIFO.

Lock *I

Condition *cv;

void Afint arg) { void ThreadTest() {
|->Acquire(); Thread *t;
cv->Signal(); | = new Lock{"lock™);
Thread->Yield(); cv = new Condition("cv");
cv->Wait(): createThread("A");
|->Release{); createThread("B");

i Thread->Yield();

void Bint arg) { Thread->Yield():
|->Acquire(); printf("Pare aqui\n");
cv->Wait();)
Thread->Yield();
cv->Signal();
|->Release():

)

Thread->yield obliga al hilo que realiza la llamada a renunciar al uso del procesador y a esperar en la cola de listos.

1. Escribir la secuencia de cambios de contexto que ocurrieron hasta este punto,
2. Enumerar las colas en las que se encuentran los hilos en este punto, y su orden relativo si hay mas de un hilo en una cola
3. Indicar el estado de cada uno de los hilos.

1. Traza en la que se pueden ver los cambios de contexto

2.
El hilo A esta en la cola de espera de la cv.
El hilo B esta en la cola de espera del lock.

3.
Los hilos Ay B estan en estado waiting.
El hilo principal esta en estado terminated?

(NI IDEA SI ESTA BIEN)

1.- Considere un proceso compuesto por dos hilos, p y g, que estan compuestos por un conjunto de sentencias
atomicas (A, B, C, D, y E). El proceso crea los dos hilos y comienza la ejecucion concurrente. Muestre todos los posibles
entrelazados de ejecucion, considerando que los hilos contienen las siguientes sentencias.

void p() void q()
{ A; { D;

B: E

- }

Parcial 2019
Ejercicio 1

1. Cuéles son los motivos principales para ut

2. Cuéles son las causas que provocan la ejecuc

Brinde ejemplo para cada una.

itarea.

1o cistemas operativos mult
IRzarssis £ | sistema operativo.

i6n de codigo del kernel de

1. Los sistemas operativos multitarea permiten ejecutar varios programas en simultaneo
generando una mayor eficiciencia a la hora de realizar tareas ya que no se tiene que realizar
de a una a la vez, sino que se las realiza en conjunto. Como consecuencia, tambien permite
que muchos usuarios utilicen el sistema a la vez ya que se reparte el tiempo del procesador
entre las tareas de todos los usuarios.

2. Las causas que provocan la ejecucion ejecucion del codigo del kernel son:

* Interrupcion: ocurrio un evento externo al proceso que se esta ejecutando y debe ser
atendido, por ejemplo, se completo una operacién de E/S.

» Trap: ocurrio un error dentro del proceso que se esta ejecutando, por ejemplo, hubo un
intento de acceso a un archivo no permitido.

» System call: un programa solicito algun servicio del kernel a traves de la interfaz
provista (la llamada al sistema), por ejemplo, un proceso quiere crear un proceso hijo
con fork().

(NI IDEA SI ESTA BIEN)

Planificador de largo plazo: Determina que programas son
admitidos en el sistema para ser procesados.

Planificador de medio plazo: Determina cuando un programa es
llevado parcial o completamente a memoria principal para que este
habilitada su ejecucion.

Planificador de corto plazo: Determina que proceso en estado listo

sera el siguiente en ser ejecutado por el CPU.

(S —429,430,454)
Imagen en: S — 428

(d) Ninguna es correcta.
El despachador es el planificador de corto plazo, por lo tanto, un sistema operativo

multiprogramado no puede prescindir del despachador ya que debe poder seleccionar que
proceso sera el siguiente en acceder al procesador.

Running

Ready

Short term

Medium term

Long term

a) Falso, no necesariamente tiene que utilizarse colas multinivel.

b) Falso, las cantidad de colas de proceso bloqueados dependera de la cantidad de recursos
a los que quieran acceder los procesos.

c) Falso, si bien el balanceo de carga es algo ideal, esto debe ser implementado y el
enunciado no aclara nada al respecto.

d) Verdadero.

(NI IDEA SI ESTA BIEN)

Diria que la (a) o la (d) pero ni idea

Definicion de progreso (G — 260)

2 s : - e uIIa ey LOITECta k
->8a Un recurso R de acceso exclusivo V'Se.a
Operaciones varias -

Protocolo de salida
Resto de operaciones

Si se deseg solucionar

los ro ren
Procesos, se pyede - Protocolos de entrg,

mar que
a) six= 2, 1a tnica s 3 :
€N seméforos de cuent seria utili

Si :

’a z:.. 2,10 es posibje solucionar ef prpt
; nica solucign posible '€l proble

Ninguna e Correcta Sita exacta

lucién posibje
b)
¢

Ejercicio &

(d) Ninguna es correcta.

No importa la cantidad de procesos que esten involucrados se debe utilizar un semaforo
binario ya que solo uno proceso puede entrar en la seccion critica a la vez, por lo tanto, el
acceso solo puede estar habilitado (nadie esta usando la seccion critica) o deshabilado
(alguien esta usando la seccion critica)

anificar hilos

(Indicar opcion correcta) Un proceso interbloqueado:
a) Simpre esta en espera ocupada.

b) Nunca ejecuta.
c) Puede estar suspendido.

a) Falso, ya que el semaforo no necesariamente esa implementado con espera ocupada,
puede que el proceso sea suspendido.

b) Falso, si el semaforo esta implementado con espera ocupada entonces si esta ejecutando
mientras espera.

c) Verdadero, si PUEDE en el caso que el semaforo este implementado sin espera ocupada.

(respondido en la clase)

Parcial random

1.- Enumere ventajas y desventajas de kernels monolitico, micro-kernel y modulados

- -

Un kernel monolitico no tiene estructura, ubica todas las funcionalidades del kernel en un
solo archivo binaria estatico qu se ejecuta en un solo espacio de memoria. El kernel provee
el sistema de archivos, la planificacion del del procesador, el manejo de memoria y otras
funcionalidades a traves de system calls, es decir, hay muchas funcionalidades dentro de un
solo espacio de memoria.

Como ventaja, tiene buena performance y la comunicacion dentro del kernel es rapida, ya
que se encuentra todo dentro de el. Sin embargo, tiene como desventaja que es dificil de
implementar y extender.

Un microkernel estructura al sistema de manera que todo componente no escencial sea
removido del kernel y se lo implmenete como un programa de usuario. Su principal funcion
€s proveer comunicacion entre el programa y otros servicios que tambien estan ejecutandose
en el espacio de usuario.

Como ventaja, extender el kernel es sencillo a comparacion del monotilico, ademas, provee
mayor seguridad y fiabilidad ya que la mayoria de los serivicios corren como procesos
usuarios en vez de kernel, si un servicio falla, el resto queda sin alterar.

Como desventaja, tiene una mala performance ya que cada vez que dos servicios a nivel
usuario se quieren comunicar, los mensajes se deben copiar entre los servicios, que estan en
espacios de memoria separados. Ademas, el SO puede tener que cambiar de un proceso al
otro para intercambiar los mensajes. Todo esto genera peor performance.

Un kernel modular tiene un conjunto de componentes centrales y puede agregar diferentes
servicios a traves de modulos. Todos los modulos pueden comunicarse entre si.

Como ventaja es parecido al microkernel ya que el modulo primario solo tiene funciones
centrales, pero es mas eficiente ya que los modulos no necesitan pasaje de mensajes para

comunicarse. A su vez, es mas facil de implementar y extender que un kernel monolitico ya
que solo tiene las funcionalidades necesarias en el modulo central.

(G — 82 hasta 86)

S ——
2.- Describa dos operarmnes del Sistema Operatwo para proteger los recursos
7?7
Una operacion del sistema operativo para proteger los recursos es el cambio de modo entre
usuario y kernel. En el modo usuario, las posibilidades de accion estan restringidas, por
ejemplo, acceso a ciertas instrucciones para el manejo de la memoria, acceso a tablas
importantes como el PCB, acceso a los registros, etc.

Y la segunda operacién no se.

(NI IDEA SI ESTA BIEN)
1.- Describa cémo estd compuesto el PCB.

Cuando un proceso esta en el sistema, necesita guardarse cierta informacion del mismo para
que el sistema operativo pueda manejarlo, por ello, cada proceso tiene su PCB, este esta
compuesto por los siguientes elementos del proceso: el pid, el estado, el program counter,
punteros de memoria, datos de contexto (que estan en los registros del procesador mientras
se ejecuta), informacion del estado de E/S e informacion adicional (por ejemplo: tiempo de
uso del CPU, limites de tiempo, etc).

2.- Dado el Siguiente segmento de codigo:
pid_t pid:

pid = fork();

if (pid == 0) {
fork(); 5
createThread(....);

>
fork();

a) ¢Cudntos procesos son creados? Explique como llega a la solucion.
b) ¢Cudntos hilos son creados? Explique cémo llega a la solucion.

a) Se crean 5 procesos, primero el padre (proceso 1), luego, en el fork() anterior al if se crea
al hijo (proceso 2), este hijo entra al if y en el fork del if se crea al hijo del hijo (proceso 3).
Finalmente, luego del bloque del if, tanto el padre como el hijo originales realizan un fork()
creando cada uno otro proceso (proceso 4 y proceso 5).

b) Se crean 2 hilos, el proceso 2 (de la explicacion del inciso a) realiza el fork() creando al
proceso 3, por lo tanto, ambos continuaran su ejecucion en la sentencia siguiente la cual es
la de creacion de hilo y cada uno creara un hilo.

(NI IDEA SI ESTAN BIEN)

—g— o ——— =

1.- La mayoria de
procesos que son elegibles para ser ejecutados. En sistemas multiprocesador, existen dos opch
generales para su implementacion:

- cada procesador tiene su propia cola
- una sola cola compartida entre todos los procesadores
iQué ventajas y desventajas tiene cada una de estas implementaciones?

F DL D B TR T o P

los algoritmos de planificacion mantienen una cola de listos que mantiene los
ones

Si hay una sola cola compartida, la desventaja es que podria suceder una condicion de
carrera, por lo tanto se deberia acceder a un mutex para poder acceder a la cola de forma
exclusiva y evitar la condicion de carrera. Esto genera una menor performance ya que
involucra que mientras un procesador esta obteniendo su proximo proceso, el resto deba
esperar generando un cuello de botella.

Como ventaja, no surgen problemas respecto al balance de la carga entre los distintos
procesadores ya que al tener todos una misma cola, en cuanto algun procesador este libre,
otro proceso accedera al mismo.

Si cada procesador tiene su propia cola, como ventaja se eliminan las infeciencias del acceso
exclusivo a una sola cola ya que cada procesador tiene su propia cola privada.

Como desventaja, puede suceder que mientras algun procesador esta muy sobrecargado,
otro este inactivo, por lo tanto, se debe implementar alguna forma de balanceo de carga.
Ademas, otra situacion que ocurre es la afinidad del procesador que tienen cada proceso, ya
que al cambiarlo se debe vaciar su memoria cache del procesador que dejo y repoblarla con
nueva informacion, esto conlleva una desmejora en la performance.

(G — 220 hasta 225)

CUUE VETILEJO3 ¥ WEIVET FVEjms srerrms o -
2.- ¢ Cudl/es de los siguientes algoritmos de plamflcaclén pueden sufri

- FIFO

- SJIF

-RR
- Prioridad

ir inanicidn? Justifique.

El algoritmo de planificacion por prioridades puede sufrir inanicion ya que si constantemente
llegan procesos de alta prioridad, estos ganaran el acceso al procesador mientras que
aquellos de menor prioridad deberan estar continuamente esperando para poder utilizarlo.
Tambien puede pasar con SJF ya que si constantemente llegan procesos con menor tiempo
de proxima rafaga, los que tengan mayor rafaga deberan esperan continuamente.

