Procesamiento Digital de Señales - Examen recuperatorio - 5 de diciembre de 2011

- 1. Verifique si el sistema caracterizado por la ecuación a diferencias $y[n] = \cos(\pi/3)$ $y[n-1] + (1/4)^n x[n]$, con y[-1] = 0, es:
 - (a) lineal;
 - (b) invariante en el tiempo;
 - (c) causal;
 - (d) estable.
- 2. Sea x[n] una sucesión de longitud N=8 dada por $x[n]=\{2,0,4,0,6,0,4,0\}$, y sea X[k] su TDF de 8 puntos.
 - (a) La TDF X[k] ¿es real, imaginaria pura o compleja? ¿Por qué?
 - (b) Evalúe las siguientes expresiones sin calcular explícitamente la TDF. Justifique brevemente cada cómputo.
 - (i) X[0]

- (ii) X[4] (iii) $\sum_{k=0}^{7} X[k]$ (iv) $\sum_{k=0}^{7} e^{j\frac{2\pi k}{8}^2} X[k]$ (v) $\sum_{k=0}^{7} |X[k]|^2$

- (c) ¿Es cierto que X[k] = X[k+4], para k = 0, 1, 2, 3? Justifique
- 3. Para la función de sistema

$$H(z) = \frac{(1 - \frac{1}{2}z^{-1})(1 + \frac{1}{2}z^{-1})(1 - 1.5e^{-j(\pi/3)}z^{-1})(1 - 1.5e^{+j(\pi/3)}z^{-1})}{(1 - 0.7e^{-j(\pi/6)}z^{-1})(1 - 0.7e^{+j(\pi/6)}z^{-1})(1 + \frac{1}{3}z^{-1})(1 - \frac{1}{4}z^{-1})}.$$

- (a) Dibuje el diagrama de polos y ceros.
- (b) Calcule todas las respuestas impulsivas (asociadas a cada una de las regiones de convergencia) y determine si (i) causales; (ii) estables.
- (c) Para las sucesiones causales del inciso anterior aplique el teorema del valor inicial, y verifique el valor de h[0].
- (d) Descomponga H(z) como $H(z) = H_{M1}(z) H_{PT}(z)$, donde $H_{M1}(z)$ es de mínima fase y $H_{PT}(z)$ es pasatodo.
- (e) Dibuje el diagrama de polos y ceros de $H_{\rm MI}(z)$ y de $H_{\rm PT}(z)$.
- (f) Descomponga H(z) como $H(z) = H_{FL}(z)$ $H_{M2}(z)$, donde $H_{FL}(z)$ es de fase lineal generalizada y $H_{M2}(z)$ es de fase mínima [esta $H_{M2}(z)$ puede ser distinta de la $H_{M1}(z)$ del inciso (b)]
- (g) Dibuje el diagrama de polos y ceros de $H_{\rm FL}(z)$ y de $H_{\rm M2}(z)$.
- (h) Diseñe un compensador $H_C(z)$ para H(z) de manera que $|H(z)H_C(z)| = 1$.
- **4.** La señal $x(t) = 3\cos(2\pi 100t) + 2\cos(2\pi 400t)$ se muestrea a $f_s = 600$ Hz, obteniéndose la señal discreta x[n].
 - (a) Dibuje el espectro X(f) de x(t).
 - (b) Dibuje el espectro $X(e^{j\omega})$ de x[n], indicando las frecuencias discretas ω_i presentes en la señal.
 - (c) Especifique la respuesta en frecuencia del filtro reconstructor ideal.
 - (d) Escriba la expresión analítica de la señal continua $x_r(t)$ que se obtiene al filtrar la señal x[n] con un **filtro** reconstructor ideal, indicando claramente las frecuencias presentes en la señal de salida.
 - (e) Escriba la forma general de la señal continua $x_m(t)$ que se obtiene al filtrar la señal x[n] con un **mantenedor de** orden cero, indicando claramente las frecuencias presentes en la señal de salida.
 - (f) Especifique bajo qué condiciones el sistema que usa el **reconstructor ideal** se comporta como un sistema lineal.
 - (g) Especifique bajo qué condiciones el sistema que usa el mantenedor de orden cero se comporta como un sistema lineal.

Serie de Fourier (SF)	Transformada de Fourier (TF)	Transf. de Fourier de señales discretas (TFTD)	Transf. Discreta de Fourier (TDF)
$\tilde{x}(t) = \sum_{k} c_k e^{j\frac{2\pi}{T}kt}$	$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$
$c_{k} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}kt} dt$	$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n}$	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$
Varios	$\sum_{k=0}^{N-1} \rho^k = \frac{1-\rho^N}{1-\rho}, \ \sum_{k=0}^{\infty} \rho^k = \frac{1}{1-\rho}$	$\operatorname{sinc}(x) = \frac{\operatorname{sen}(\pi x)}{\pi x}$	

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k} X_c \left[\frac{1}{T_s} (\omega - 2\pi k) \right] \quad \Leftrightarrow \quad x[n] = x_c (nT_s) \qquad \Leftrightarrow \quad X(e^{j\omega}) = \frac{1}{T_s} \sum_{k} X_c \left[\frac{f_s}{2\pi} (\omega - 2\pi k) \right]$$

$$Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}) \qquad \Leftrightarrow \quad y[n] = x[n] * h[n] \qquad \Leftrightarrow \quad Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega})$$

$$Y_s(\Omega) = Y(e^{j\omega}) \big|_{\substack{\omega = \Omega \frac{2\pi}{\Omega s} \\ = \Omega T s}} \qquad \Leftrightarrow \quad y_s(t) = \sum_{n} y[n] \delta(t - nT_s) \qquad \Leftrightarrow \quad Y_s(f) = Y(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$Y_r(f) = H_r(\Omega) Y_s(\Omega) \qquad \Leftrightarrow \quad y_r(t) = \sum_{n} y[n] h_r(t - nT_s) \qquad \Leftrightarrow \quad Y_r(f) = H_r(f) Y_s(f)$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = \Omega \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j\omega}) X(e^{j\omega}) \big|_{\substack{\omega = f \frac{2\pi}{f s} \\ = 2\pi f T s}}}$$

$$= T_s H(e^{j$$

$$z^{N} = re^{j\theta}$$
 \Rightarrow $z_{k} = \sqrt[N]{r}e^{j\frac{\theta+2\pi k}{N}}, k = 0, 1, ..., N-1$

prmada Bilineal:
$$s = \frac{2}{T} \frac{(1-z^{-1})}{(1+z^{-1})}$$
, $z = \frac{(2/T+s)}{(2/T-s)}$, $\omega = 2\arctan(\pi f T_d)$, $f = \frac{1}{\pi T_d}\tan(\frac{\omega}{2})$

ción al impulso: $h[n] = T_d h_c(t)|_{t=nT_d}$